DUAL CHANNEL LINEAR AMPLIFIER
WITH PHASE INVERTER
Model A800DI

HIGH VOLTAGE
1600Vpp 60mA

FIXED GAIN
100x

BROADBAND
DC to ca 200 kHz

LOW OUTPUT IMPEDANCE
<0.1 Ω

HIGH SLEW RATE
300 V/µs
GENERAL DESCRIPTION

The **A800DI** is a general purpose linear amplifier designed for laboratory use. It is based on a fast high-voltage operational amplifier with a feedback network chosen to give a voltage amplification of 100 times. Any function or arbitrary waveform generator with low output impedance and output voltage up to ±10 V can be used as an input device.

The instrument contains two identical amplifiers sharing a common power supply.

The instrument also includes a low voltage phase inverter that facilitates driving the two high voltage outputs in counter-phase.

The amplifier outputs high voltage signals at high frequency. It is, thus, imperative for the safe operation that the user understands the possibilities and limitations of the instrument. Isolated BNC output connector is used to comply with safety requirements.

INPUT AMPLITUDE

The amplitude of the input signal should normally be kept within ±4 V. The input protection network limits the signal amplitude delivered to the power amplifier to a safe value. It also effectively cuts accidental spikes and overshoots. However, large and prolonged overvoltage at the input may blow the microfuse in the input protection circuit.

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Condition</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No output</td>
<td>Power switch is not lit</td>
<td>Check the mains fuse located on the back</td>
</tr>
<tr>
<td>No output or very small,</td>
<td>Power switch OK</td>
<td>Check the input microfuse located inside the device.</td>
</tr>
<tr>
<td>distorted signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant high voltage output</td>
<td>Without any input signal</td>
<td>Amplifier failure. Contact flce@flce.se</td>
</tr>
</tbody>
</table>
You should suspect a blown input microfuse if the output is about zero or the amplifier is producing a very low voltage, distorted copy of the input signal (due to the capacitive coupling through the blown fuse).

Spare microfuses are provided inside the instrument. They look like small metal cans and are placed in white holders. The resistance of a good fuse is in the order of 46 ohm. It is imperative to disconnect the power cable and wait at least a minute before opening the case. If possible, contact info@flce.se for advice.

Keep input signals within ±4 V range.

Never connect any high voltage output to any input or output of the instrument!

PHASE INVERTER

The A800DI contains a phase inverter which shares the input with the first amplifier (see the drawing on the next page). The phase inverter is intended to allow a bridge connection of the amplifiers and the load to achieve double amplitude of the output signal. In such a case, the output of the phase inverter should be connected to the input of the second amplifier, an external signal supplied to the input of the first amplifier and the load connected between the outputs of both amplifiers as in the example below.

Observe, that both sides of the connected load are actively driven and must be isolated from the ground. The voltage over the load is in this case $U_1 - U_2 = U_1 - (-U_1) = 2U_1$ since $U_2 = -U_1$.

It is, of course, possible to supply separate signals to the low voltage inputs of both amplifiers and still use the differential connection of the load, as in the drawing. The amplifiers can also be used as two independent units sharing the common ground reference.

PLEASE NOTE:

In the differential configuration - isolate the load from ground and use two separate oscilloscope probes to monitor the voltage over the load.
LOAD

The amplifier is intended to drive resistive and/or small capacitive loads. The maximum capacitive load depends on the slew rate of the amplifier. The slew rate is normally set at the factory to 300 V/µs which is appropriate for a small load (for example 5 kΩ in series with 100 pF). Due to the output current limit (60 mA) the slew rate at higher load of 300 pF drops to ca 160 V/µs rising edge and ca 100 V/µs falling edge. This load includes the capacitance of the connection cable (ca 100 pF/m for a standard coaxial cable). Increasing the capacitive load causes overshoot to appear. If a larger capacitive load is required, and the overshoot is not acceptable, then the slew should be reduced accordingly. Such an adjustment may be performed by qualified personnel and the factory should be contacted for advice (preferably by email info@flce.se). Inside the cabinet exist hazardous voltage levels and the amplifier circuit is sensitive to static discharge.

FLC Electronics AB recommends to monitor the output signal of the amplifier with an oscilloscope. It is then important to use a low capacitive probe with a division factor of at least 1/100 (please note also the maximum voltage that can be connected to the oscilloscope input and that can be handled by the probe).

Overloading the output may cause an overshoot which might be dangerous for connected devices.

The amplifier cannot be used to drive a purely inductive load.

The continuous output current limit is 60 mA and the output power limit is 30 W (per channel). The output is equipped with a current limiting circuit that withstands accidental short-circuits. Prolonged short-circuiting may result in overheating the amplifier.

The amplifier may be overheated when the output is short-circuited for a long time.
FREQUENCY RESPONSE

The graph below shows full-scale frequency response of **A800** without load and with 300 pF pure capacitive load, respectively:
SUMMARY OF TECHNICAL DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth:</td>
<td>DC to about 200 kHz at 800 Vpp</td>
</tr>
<tr>
<td>Amplification:</td>
<td>100 times</td>
</tr>
<tr>
<td>Load:</td>
<td>type resistive</td>
</tr>
<tr>
<td></td>
<td>max capacitive load 300 pF</td>
</tr>
<tr>
<td>Impedance:</td>
<td>input 1 MΩ</td>
</tr>
<tr>
<td></td>
<td>output <0.1 Ω in the linear mode</td>
</tr>
<tr>
<td>Voltage:</td>
<td>input nominal ±4 V</td>
</tr>
<tr>
<td>Current:</td>
<td>output maximum 60 mA each channel</td>
</tr>
<tr>
<td>Slew Rate:</td>
<td>output ca 300 V/µs without load</td>
</tr>
<tr>
<td></td>
<td>(different adjustments available on request)</td>
</tr>
<tr>
<td>Input protection fuse</td>
<td>15 mA (Littelfuse, part number 272.015)</td>
</tr>
<tr>
<td></td>
<td>one spare fuse provided inside the instrument,</td>
</tr>
<tr>
<td></td>
<td>additional fuses available from Littelfuse</td>
</tr>
<tr>
<td></td>
<td>resellers or from FLC Electronics AB.</td>
</tr>
<tr>
<td>Operating Ambient Temperature:</td>
<td>0°C to 30°C</td>
</tr>
<tr>
<td>Storage Temperature:</td>
<td>0°C to 60°C</td>
</tr>
<tr>
<td>Relative Humidity:</td>
<td>up to 90% (operation)</td>
</tr>
<tr>
<td></td>
<td>30% to 50% (storage)</td>
</tr>
<tr>
<td>Power Requirements:</td>
<td>100, 120 or 230 V, 50/60 Hz factory set</td>
</tr>
<tr>
<td></td>
<td>or 110/220V line voltage selector</td>
</tr>
<tr>
<td>Fuse:</td>
<td>2 A (slow)</td>
</tr>
<tr>
<td>Dimensions (H/W/L):</td>
<td>112 x 255 x 316 (mm)</td>
</tr>
<tr>
<td>Weight:</td>
<td>4 kg</td>
</tr>
<tr>
<td>Country of Origin:</td>
<td>Sweden</td>
</tr>
</tbody>
</table>

Note: Specifications apply to instruments operating at 23°C±5°C ambient temperature after 15 min. warm-up time. Due to ongoing product development, specifications are subject to change without notice.

WARNING It is not allowed to connect the 100...230V AC line power input of the amplifier to DC-AC converters or solid state AC generators with non-sinusoidal output.

Data sheet revision date: 30 November 2016
WARRANTY

FLC Electronics warrants that this product will be free from defects in materials and workmanship for a period of two years from the date of the shipment.

If any such product proves defective during this warranty period, FLC Electronics, at its option, either will repair the defective product without charge for parts and labour, or will provide a replacement for the defective product. In order to obtain service under this warranty, Customer must notify FLC Electronics of the defect before the expiration of the warranty period and make suitable arrangements for the performance of the service. Customer shall be responsible for packing and shipping the defective product to the service center designed by FLC Electronics, with shipping charges prepaid. FLC Electronics shall pay for the return of the product to the Customer if the shipment is to a location within the country in which the FLC Electronics service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or inadequate maintenance and care. FLC Electronics shall not be obligated to furnish service under this warranty:
• to repair damage resulting from attempts by personnel other than FLC Electronics representatives to install, repair or service the product;
• to repair damage resulting from improper use or connection to incompatible equipment;
• to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

This warranty is given by the FLC Electronics with respect to this product in lieu of any other warranties, expressed or implied. FLC Electronics and its vendors disclaim any implied warranties of merchantability or fitness for a particular purpose. FLC Electronics’ responsibility to repair or replace defective products is sole and exclusive remedy provided to the customer for breach of this warranty. FLC Electronics and its vendors will not be liable for any indirect, special, advance notice of the possibility of such damages.

The instrument may generate hazardous voltage levels! It should be operated by qualified personnel only. The instrument is to be used in normal room temperature and humidity.

The manufacturer cannot be held responsible for damage to any device connected to the instrument. It is recommended that samples or equipment sensitive to voltage spikes are disconnected from the high-voltage outputs when turning the power to the instrument ON or OFF.
IMPORTANT

![Warning icon]

Inside the amplifier case exist dangerous voltage levels.

![Warning icon]

The amplifier cannot be used to drive an inductive load.

![Warning icon]

The instrument cannot be powered from a DC-AC converter nor from a solid-state AC generator with non-sinusoidal output.

![Warning icon]

Loads sensitive to voltage transients should be disconnected from the amplifier during power-up and power-down.

![Warning icon]

Never connect the output to the input of the amplifier!

![Warning icon]

The amplifier may be overheated if the output is short-circuited for a long time.

![Warning icon]

It is recommended to monitor the output signal of the amplifier on the oscilloscope.
EC Declaration of Conformity

We

FLC Electronics AB
Sippedalsvägen 8
SE-43331 Partille
Sweden

declare under sole responsibility that the

Voltage Amplifier A800DI

meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility (EMC) and Low Voltage Directive 73/23/EEC (LVD). Compliance was demonstrated to the following standards as listed in the official Journal of the European Communities:

- EN 50081-1 Generic Emissions
- EN 55022 Conducted emission (interference voltage), class B
- EN 55022 Radiated emission (electric field), class B
- EN 50082-1 Generic Immunity
- EN 61000-4-4 Electrical fast transient/burst
- EN 61000-4-2 Electrostatic discharge
- EN 61000-4-3 Radiated E-fields (radio frequency)
- EN 61010-1:2010 Electrical Safety

Tomasz Matuszczyk, PhD
Technical Director
FLC Electronics AB

May 8, 2014