BROADBAND LINEAR AMPLIFIER
WITH A±B INPUTS AND DC-OFFSET
Model A400X

HIGH VOLTAGE
±200V
150mA

FIXED GAIN
20x

BROADBAND
DC to ca 500 kHz
FULL SCALE

LOW OUTPUT IMPEDANCE
<0.1 Ω

HIGH SLEW RATE
400 V/μs
GENERAL DESCRIPTION

The **A400X** is a broadband high voltage linear amplifier equipped with two inputs (marked +A and ±B, respectively). The output is a sum or difference of supplied signals, amplified x20, as shown in the following example:

![Graph showing input A, input B, (A+B)x20, and (A-B)x20](image)

The inverting or non-inverting function of the input B is chosen using a switch on the front panel. The inputs, when used separately, allow the unit to act as inverting or non-inverting amplifier. Any function or arbitrary waveform generator or any other signal source with a voltage up to ±10 V can be used as an input device.

By means of another switch the output can be attenuated 100 times (-40dB) for safe handling.

A **DC level**, adjustable within 0...+10V range, is provided on the front panel from two BNC contacts marked “OFFSET OUT”. Both contacts are internally connected to simplify monitoring of the output. For bipolar operation the DC level should be supplied to ±B input.
Please note that the maximum total amplitude of superposed A and B signals should stay within ±10V range, otherwise clipping will occur.

The amplifier outputs high voltage signals at high frequency. It is, thus, imperative for the safe operation that the user understands the possibilities and limitations of the instrument. Isolated BNC output connector is used to comply with safety requirements.

INPUT AMPLITUDE

The amplitude of the input signal should normally be kept within ±10 V. The input protection network limits the signal amplitude delivered to the power amplifier to a safe value. It also effectively cuts accidental spikes and overshoots. However, large and/or prolonged overvoltage at the input may blow the microfuse in the input protection circuit. (A spare fuse is provided inside the instrument. If possible, contact flce@flce.se for advice before opening the instrument case.)

Keep input signals within ±10 V range. Never connect the high voltage output to the input of the instrument!

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Condition</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No output</td>
<td>Power switch does not lit</td>
<td>Check the mains fuse located on the back</td>
</tr>
<tr>
<td>No output or very small, distorted signal</td>
<td>Power switch OK</td>
<td>Check the input microfuse located inside the device.</td>
</tr>
<tr>
<td>Constant high voltage output</td>
<td>Without any input signal</td>
<td>Amplifier failure. Contact flce@flce.se</td>
</tr>
</tbody>
</table>

You should suspect a blown input microfuse if the output is about zero or the amplifier is producing a very low voltage, distorted copy of the input signal (due to the capacitive coupling through the blown fuse). Spare microfuses are provided inside the instrument. They look like small metal cans and are placed in white holders. The resistance of a good fuse is in the order of 46 ohm. It is imperative to disconnect the power cable and wait at least a minute before opening the case. If possible, contact info@flce.se for advice.
LOAD

The amplifier is intended to drive resistive and/or small capacitive loads. The maximum capacitive load depends on the slew rate of the amplifier. The slew rate is normally set at the factory to 400 V/μs which is appropriate for a small load (for example 5 kΩ in series with 100 pF). Due to the output current limit (150 mA) the slew rate at higher load of for example 300 pF drops to ca 300 V/μs and for 400 pF drops to 250 V/μs. This load includes the capacitance of the connection cable (ca 100 pF/m for a standard coaxial cable). Increasing the capacitive load may cause an overshoot to appear. If a larger capacitive load is required, and the overshoot is not acceptable, then the slew should be reduced accordingly. Such an adjustment may be performed by qualified personnel and the factory should be contacted for advice (preferably by email info@flce.se). Inside the cabinet exist hazardous voltage levels and the amplifier circuit is sensitive to static discharge.

FLC Electronics AB recommends to monitor the output signal of the amplifier with an oscilloscope. It is then important to use a low capacitive probe with a division factor of at least 1/10.

Overloading the output may cause an overshoot which might be dangerous for connected devices.

The amplifier output is equipped with fast-recovery diodes for protection against high energy flyback and can be used to drive small (mH) inductances in series with resistance.

The amplifier cannot be used to drive a purely inductive load.

The continuous output current limit is 150 mA and the output power limit is 30 W. The output is equipped with a current limiting circuit that withstands accidental short-circuits. Prolonged short-circuiting may result in overheating the amplifier.

The amplifier may be overheated when the output is short-circuited for a long time.
FREQUENCY RESPONSE

Full scale frequency response without load and with 300 pF and 400 pF load, respectively, is shown in the following diagram:
SUMMARY OF TECHNICAL DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>DC to about 1 MHz at 100 Vpp</td>
</tr>
<tr>
<td>Amplification</td>
<td>20 times fixed</td>
</tr>
<tr>
<td>Load</td>
<td>type: resistive</td>
</tr>
<tr>
<td>Impedance</td>
<td>input (each): 1 MΩ</td>
</tr>
<tr>
<td></td>
<td>output: <0.1 Ω in the linear mode</td>
</tr>
<tr>
<td>Voltage</td>
<td>input: nominal ±10 V</td>
</tr>
<tr>
<td>Current</td>
<td>output: maximum 150 mA</td>
</tr>
<tr>
<td>Slew Rate</td>
<td>output: ca 400 V/μs (different adjustments available on request)</td>
</tr>
<tr>
<td>Input protection fuse</td>
<td>15 mA (Littelfuse, part number 272.015)</td>
</tr>
<tr>
<td></td>
<td>one spare fuse provided inside the instrument</td>
</tr>
<tr>
<td></td>
<td>additional fuses available from Littelfuse resellers or from FLC Electronics AB.</td>
</tr>
<tr>
<td>DC Level</td>
<td>0…+10 V, max 150 mA</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>0°C to 30°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>0°C to 60°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>up to 90% (operation)</td>
</tr>
<tr>
<td></td>
<td>30% to 50% (storage)</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>100/110 V or 220/230 V, 50/60 Hz</td>
</tr>
<tr>
<td>Fuse</td>
<td>100/110 V: 3.15 A (slow), 220/230 V: 2 A (slow)</td>
</tr>
<tr>
<td>Dimensions (H/W/L)</td>
<td>112 x 255 x 316 (mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>4 kg</td>
</tr>
<tr>
<td>Country of Origin</td>
<td>Sweden</td>
</tr>
</tbody>
</table>

Note: Specifications apply to instruments operating at 23°C±5°C ambient temperature after 15 min. warm-up time. Due to ongoing product development, specifications are subject to change without notice.

WARNING It is not allowed to connect the 100...230V AC line power input of the amplifier to DC-AC converters or solid state AC generators with non-sinusoidal output.

Data sheet revision date: 15 February 2019
WARRANTY

FLC Electronics warrants that this product will be free from defects in materials and workmanship for a period of two years from the date of the shipment.

If any such product proves defective during this warranty period, FLC Electronics, at its option, either will repair the defective product without charge for parts and labour, or will provide a replacement for the defective product. In order to obtain service under this warranty, Customer must notify FLC Electronics of the defect before the expiration of the warranty period and make suitable arrangements for the performance of the service. Customer shall be responsible for packing and shipping the defective product to the service center designed by FLC Electronics, with shipping charges prepaid. FLC Electronics shall pay for the return of the product to the Customer if the shipment is to a location within the country in which the FLC Electronics service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or inadequate maintenance and care. FLC Electronics shall not be obligated to furnish service under this warranty:

- to repair damage resulting from attempts by personnel other than FLC Electronics representatives to install, repair or service the product;
- to repair damage resulting from improper use or connection to incompatible equipment;
- to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

This warranty is given by the FLC Electronics with respect to this product in lieu of any other warranties, expressed or implied. FLC Electronics and its vendors disclaim any implied warranties of merchantability or fitness for a particular purpose. FLC Electronics’ responsibility to repair or replace defective products is sole and exclusive remedy provided to the customer for breach of this warranty. FLC Electronics and its vendors will not be liable for any indirect, special, advance notice of the possibility of such damages.

The instrument may generate hazardous voltage levels! It should be operated by qualified personnel only. The instrument is to be used in normal room temperature and humidity.

The manufacturer cannot be held responsible for damage to any device connected to the instrument. It is recommended that samples or equipment sensitive to voltage spikes are disconnected from the high-voltage outputs when turning the power to the instrument ON or OFF.
I M P O R T A N T

Inside the amplifier case exist dangerous voltage levels.

The instrument cannot be powered from a DC-AC converter nor from a solid-state AC generator with non-sinusoidal output.

Loads sensitive to voltage transients should be disconnected from the amplifier during power-up and power-down.

Never connect the output to the input of the amplifier!

The amplifier may be overheated if the output is short-circuited for a long time.

The maximum allowable capacitive load depend on the internal setting of the slew rate. Overloading the output is likely to cause overshoot. Slow down the amplifier to accommodate a larger load.

It is recommended to monitor the output signal of the amplifier on the oscilloscope.
EC Declaration of Conformity

We

FLC Electronics AB
Sippedalsvägen 8
SE-43331 Partille
Sweden

declare under sole responsibility that the

Voltage Amplifier A400X

meets the intent of Directive 89/336/EEC for Electromagnetic Compatibility (EMC) and Low Voltage Directive 73/23/EEC (LVD). Compliance was demonstrated to the following standards as listed in the official Journal of the European Communities:

- EN 50081-1 Generic Emissions
- EN 55022 Conducted emission (interference voltage), class B
- EN 55022 Radiated emission (electric field), class B

- EN 50082-1 Generic Immunity
- EN 61000-4-4 Electrical fast transient/burst
- EN 61000-4-2 Electrostatic discharge
- EN 61000-4-3 Radiated E-fields (radio frequency)

- EN 61010-1:2010 Electrical Safety

Tomasz Matuszczyk, PhD
Technical Director
FLC Electronics AB

May 8, 2014